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Abstract. Based on a theoretical model proposed for quasi-one-dimensional organic polymer ferromagnets,
the ground state and low-lying magnetic excitation are studied. Within Hartree-Fock approximation, the
ground state of the system is shown to be a stable ferromagnetic state due to the electron-electron correla-
tion and topological structure of the system. The random-phase approximation is employed to explore the
magnon excitation and the excitation spectrum is obtained, including an acoustic mode and four optical
modes. It is found that the acoustic mode possesses the characteristic of the ferromagnetic magnon.

PACS. 75.30.Ds Spin waves – 71.20.Rv Polymers and organic compounds – 75.50.Dd Nonmetallic ferro-
magnetic materials

1 Introduction

In recent years, there has been great interest in explor-
ing organic ferromagnets. Several organic ferromagnets,
such as poly-BIPO [1], m-PDPC [2] and p-NPNN [3],
have been successfully synthesized. However, only a lit-
tle has been known about the mechanism of the magneti-
cally ordered state in organic materials. As is well-known,
the magnetism in the transition metal compounds mainly
originates from the strong interactions between the itiner-
ant or localized d electrons and the itinerant s electrons.
In organic polymer molecular ferromagnets there are no
magnetic ions as in common ferromagnetic materials. The
search for the origin of ferromagnetism in organic ferro-
magnets has become a challenge that has attracted con-
siderable attention.

Ovchinnikov and Spector [4] proposed a simplified
structure schematically shown in Figure 1a. The main
chain consists of carbon atoms each with a π electron
and R is a kind of side radicals containing an unpaired
electron. They treated the π electrons along the main
carbon chain as an antiferromagnetic spin chain, and as-
sumed that there are antiferromagnetic interactions be-
tween the π-electron spin and the residual spin of radical
R. If the radicals are attached to the main carbon chain
in such a definite way, all of the residual spins at the side
radicals will tend to be in the same direction as shown
in Figure 1b and the ferromagnetic order is maintained.
Recently, Fang, Liu, and Yao [5,6] proposed a theoreti-
cal model to describe this kind of quasi-one-dimensional
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Fig. 1. (a) The simplified structure of a quasi-one-dimensional
organic polymer organic ferromagnet and (b) the arrangement
of spin.

organic ferromagnets. Within the mean-field theory, the
ground state of the system described by the theoretical
model was studied. Upon that, Wang et al. [7] investigated
the spin-wave properties of the system. Their results ac-
tually show that the ground state of the system is a stable
ferromagnetic state. In their model, the π electrons along
the main carbon chain are considered to be itinerant while
the unpaired electrons at the side radicals are regarded to
have no freedom except their spins.
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The main purpose of this paper is to study the magnon
excitation in a quasi-one-dimensional π-conjugated or-
ganic ferromagnet based on its simplified structure as
shown in Figure 1a. The system is described by a the-
oretical model in which the unpaired electrons at the side
radicals are no longer regarded to be totally localized. In
Section 2, we give the model Hamiltonian in which the
Hubbard electron-electron repulsion and the hopping of
the π electrons on the main chain as well as the unpaired
electrons at the side radicals are taken into account. The
ground state of the system is also discussed in Section 2.
In Section 3, we study the magnon excitation of the sys-
tem by random-phase approximation (RPA). The results
are given in Section 4.

2 The model Hamiltonian and ground state

The model Hamiltonian employed in our study has the
following form:

Ĥ = −T
∑
l,σ

(
â+
l1σâ(l−1)2σ + â+

l1σâl2σ + H.C.
)

− T ′
∑
l,σ

(
â+
l2σâl3σ + H.C.

)
+
∑
l

(Un̂l1αn̂l1β + Un̂l2αn̂l2β + U ′n̂l3αn̂l3β) . (1)

Here, â+
lmσ(âlmσ) denotes the creation (annihilation) op-

erator of an electron at a site specified by l, m and spin
σ (= α, β) where α and β denote up-spin and down-spin,
respectively. l (= 1, 2, . . . , N) labels the unit cell which
contains two carbon sites of the main chain and one side
radical, m (= 1, 2) labels two carbon sites while m (= 3)
labels the R side radical. T is the hopping integral be-
tween two neighboring π electrons along the main chain
while T ′ is the hopping integral between a π electron on
the main chain and an unpaired electron at the side radi-
cal. U and U ′ are the Hubbard effective electron-electron
repulsive energy of π electrons on the main chain and
unpaired electrons at the side radical, respectively, and
n̂lmσ = â+

lmσâlmσ.
It is convenient to use the following transformations:

ĥ =
Ĥ

T
, t′ =

T ′

T
, u =

U

T
, u′ =

U ′

T
· (2)

Then, the Hamiltonian Ĥ becomes

ĥ = −
∑
l,σ

(
â+
l1σâ(l−1)2σ + â+

l1σâl2σ + H.C.
)

− t′
∑
l,σ

(
â+
l2σâl3σ + H.C.

)
+
∑
l

(un̂l1αn̂l1β + un̂l2αn̂l2β + u′n̂l3αn̂l3β) . (3)
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Fig. 2. The electronic energy bands with t′ = 0.9 and u =
u′ = 0.

At first, we neglect the electron-electron correlation
(u = u′ = 0) and consider only the hopping interactions
of the electrons.

By introducing Fourier transformation, we can easily
diagonalize the Hamiltonian ĥ, and get the electron en-
ergy spectrum, which contains three bands as shown in
Figure 2. The lower band and the higher band, being sym-
metric with respect to the zero-energy level, mainly come
from the π electrons on the main chain. The highly lo-
calized band with zero energy mainly comes from the un-
paired electrons at the side radicals. Owing to u = u′ = 0,
the energy bands are degenerate with respect to spin. So
the ground state of the system is nonmagnetic.

Now, we consider the situation when u 6= 0 and u′ 6= 0.
In order to deal with the term of the Hubbard electron-
electron correlation in Hamiltonian ĥ, we use Hartree-
Fock approximation. By introducing Fourier transforma-
tion, within the mean-field theory, the energy spectrum
can be obtained through the self-consistent iterative nu-
merical calculation method. The corresponding results are
shown in Figure 3 for t′ = 0.9 and u = u′ = 1.0.

As seen from Figure 3, the degeneracy of the energy
bands with respect to spin is lifted due to the electron-
electron correlation. The energy spectrum contains three
up-spin and three down-spin energy bands. In the ground
state, the lowest two up-spin energy bands and one down-
spin energy band will be filled while the higher three en-
ergy bands will be empty. In consideration of the topologi-
cal structure of the system, the ground state of the system
is a high-spin ferromagnetic state.

Here, the energy gap between the middle localized up-
spin and down-spin bands is a very important parame-
ter. With decreasing and vanishing of the gap, the middle
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Fig. 3. The electronic energy bands with t′ = 0.9 and u =
u′ = 1.0.
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Fig. 4. The electronic energy bands with t′ = 0.9 and u =
u′ = 0.5.

highly localized up-spin energy band and down-spin en-
ergy band in Figure 3 will have a tendency to overlap. In
this case, the net spins of the system will decrease, and, as
a result, the stability of the high-spin ground state will be
spoiled. So the larger the gap is, the more stable the high-
spin ground state is. Figure 4 shows the energy spectrum
of the system when t′ = 0.9 and u = u′ = 0.5 as compared

with Figure 3 when t′ = 0.9 and u = u′ = 1.0. We can see
clearly that the strong electron-electron correlation can
increase the energy gap and, consequently, will make the
high-spin ferromagnetic ground state of the system more
stable.

3 Magnon excitation

We now proceed to the problem of low-lying magnetic
excitation above the mean-field theory ground state.

Transforming â+
lmσ and âlmσ into the Fourier compo-

nents with wave vector k,

â+
lmσ = N−1/2

∑
k

e−iklâ+
kmσ , (4a)

âlmσ = N−1/2
∑
k

eiklâkmσ. (4b)

Then Hamiltonian (Eq. (3)) can be written as

ĥ =
∑
k,σ

â+
kσM(k)âkσ +

1
N

∑
k,k′

∑
q

3∑
m=1

[u+ (u′ − u)δm,3]

× â+
k+ q

2 ,m,α
âk− q2 ,m,αâ

+
k′− q2 ,m,β

âk′+ q
2 ,m,β

. (5)

Here, â+
kσ is defined as

â+
kσ =

(
â+
k1σ, â

+
k2σ, â

+
k3σ

)
, (6)

and M(k) is defined as

M(k) =

 0 −t
(
1 + e−ik

)
0

−t
(
1 + eik

)
0 −t′

0 −t′ 0

 . (7)

From the equation

M(k)Vi(k) = Ei(k)Vi(k) (i = 1, 2, 3), (8)

we can get eigenvalue Ei(k) [E1(k) > E2(k) > E3(k)] and
eigenvector Vi(k) of M(k). V +

i (k) is a three-dimensional
row vector:

V +
i (k) = (V ∗1i(k), V ∗2i(k), V ∗3i(k)) . (9)

With the transformation

â+
kmσ =

3∑
n=1

V ∗mn(k)ĉ+knσ , (10a)

âkmσ =
3∑

n=1

Vmn(k)ĉknσ , (10b)
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γ̂+
αq =

X
k

A1(k)ĉ+
k+ q

2 ,1,β
ĉk− q2 ,2,α +

X
k

A2(k)ĉ+
k+ q

2 ,1,β
ĉk− q2 ,3,α +

X
k

A3(k)ĉ+
k+ q

2 ,2,β
ĉk− q2 ,2,α

+
X
k

A4(k)ĉ+k+ q
2 ,2,β

ĉk− q2 ,3,α +
X
k

A5(k)ĉ+k+ q
2 ,3,β

ĉk− q2 ,1,α , (12a)

γ̂+
βq =

X
k

A′1(k)ĉ+k− q2 ,2,α
ĉk+ q

2 ,1,β
+
X
k

A′2(k)ĉ+k− q2 ,3,α
ĉk+ q

2 ,1,β
+
X
k

A′3(k)ĉ+k− q2 ,2,α
ĉk+ q

2 ,2,β

+
X
k

A′4(k)ĉ+
k− q2 ,3,α

ĉk+ q
2 ,2,β

+
X
k

A′5(k)ĉ+
k− q2 ,1,α

ĉk+ q
2 ,3,β

. (12b)

A1(k) =
h
ωα(q)− E1

�
k +

q

2

�
+ E2

�
k − q

2

�i−1
"
A1(k)

3X
m=1

�
u+ (u′ − u)δm,3

�(
V ∗m1

�
k +

q

2

�
Vm1

�
k +

q

2

�

× 1

N

X
k′

�
V ∗m2(k′)Vm2(k′) + V ∗m3(k′)Vm3(k′)

�
− V ∗m2

�
k − q

2

�
Vm2

�
k − q

2

� 1

N

X
k′

V ∗m3(k′)Vm3(k′)

)

−A2(k)
3X

m=1

�
u+ (u′ − u)δm,3

�
V ∗m3

�
k − q

2

�
Vm2

�
k − q

2

� 1

N

X
k′

V ∗m3(k′)Vm3(k′)

+A3(k)
3X

m=1

�
u+ (u′ − u)δm,3

�
V ∗m1

�
k +

q

2

�
Vm2

�
k +

q

2

� 1

N

X
k′

�
V ∗m2(k′)Vm2(k′) + V ∗m3(k′)Vm3(k′)

	

−
3X

m=1

�
u+ (u′ − u)δm,3

�
V ∗m1

�
k +

q

2

�
Vm2

�
k − q

2

� 1

N

X
k′

(
A1(k′)V ∗m2

�
k′ − q

2

�
Vm1

�
k′ +

q

2

�

+A2(k′)V ∗m3

�
k′ − q

2

�
Vm1

�
k′ +

q

2

�
+A3(k′)V ∗m2

�
k′ − q

2

�
Vm2

�
k′ +

q

2

�

+A4(k′)V ∗m3

�
k′ − q

2

�
Vm2

�
k′ +

q

2

�
−A5(k′)V ∗m1

�
k′ − q

2

�
Vm3

�
k′ +

q

2

�)#
· (14)

equation (5) can be written as follows:

ĥ =
∑
k,σ

3∑
i=1

Ei(k)ĉ+kiσ ĉkiσ

+
1
N

∑
k,k′

∑
q

3∑
m=1

[u+ (u′ − u)δm,3]

×
∑
i1,i2,
i3,i4

V ∗mi1

(
k +

q

2

)
Vmi2

(
k − q

2

)

× V ∗mi3
(
k′ − q

2

)
Vmi4

(
k′ +

q

2

)
× ĉ+k+ q

2 ,i1,α
ĉk− q2 ,i2,αĉ

+
k′− q2 ,i3,β

ĉk′+ q
2 ,i4,β

. (11)

As shown in Figures 3, 4, the ground state of the system
turns to be a six-band case with Fermi surface in the gap.
Thus, the magnon excitation with spin flip can be de-
scribed in following forms [8]:

see equations (12a, 12b) above.

Here Ai(k) and A′i(k) (i = 1, 2, . . . , 5) are coupling
coefficients.

The equations of motion for magnon excitation are

ωα(q)γ̂+
αq =

[
ĥ, γ̂+

αq

]
, (13a)

ωβ(q)γ̂+
βq =

[
ĥ, γ̂+

βq

]
, (13b)

where ωα(q) and ωβ(q) denote magnon excitation energy
for α branch and β branch, respectively. By introducing
random-phase approximation (RPA) [9,10], we can obtain
equations for Ai(k) (i = 1, 2, . . . , 5) from equation (13a)
as follows:

see equations (14) above and (15–18) next pages.

Here, wave vectors |k|, |k′| and |q| take their values from
zero to π. Equations for A′i(k) (i = 1, 2, . . . , 5) have a
similar form to equations (14–18). These equations can be
solved numerically.

It can be seen from Figures 3, 4 that there are four
possible spin flips from the lowest two occupied up-spin
energy bands to the highest and the middle localized un-
occupied down-spin energy bands, and, at the same time,
there is one possible spin flip from the lowest occupied
down-spin energy band to the highest unoccupied up-spin
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A2(k) =
h
ωα(q)− E1

�
k +

q

2

�
+ E3

�
k − q

2

�i−1

"
A2(k)

3X
m=1

�
u+ (u′ − u)δm,3

�(
V ∗m1

�
k +

q

2

�
Vm1

�
k +

q

2

�

× 1

N

X
k′

�
V ∗m2(k′)Vm2(k′) + V ∗m3(k′)Vm3(k′)

�
− V ∗m3

�
k − q

2

�
Vm3

�
k − q

2

� 1

N

X
k′

V ∗m3(k′)Vm3(k′)

)

−A1(k)

3X
m=1

�
u+ (u′ − u)δm,3

�
V ∗m2

�
k − q

2

�
Vm3

�
k − q

2

� 1

N

X
k′

V ∗m3(k′)Vm3(k′)

+A4(k)
3X

m=1

�
u+ (u′ − u)δm,3

�
V ∗m1

�
k +

q

2

�
Vm2

�
k +

q

2

� 1

N

X
k′

�
V ∗m2(k′)Vm2(k′) + V ∗m3(k′)Vm3(k′)

	

−
3X

m=1

�
u+ (u′ − u)δm,3

�
V ∗m1

�
k +

q

2

�
Vm3

�
k − q

2

� 1

N

X
k′

(
A1(k′)V ∗m2

�
k′ − q

2

�
Vm1

�
k′ +

q

2

�

+A2(k′)V ∗m3

�
k′ − q

2

�
Vm1

�
k′ +

q

2

�
+A3(k′)V ∗m2

�
k′ − q

2

�
Vm2

�
k′ +

q

2

�

+A4(k′)V ∗m3

�
k′ − q

2

�
Vm2

�
k′ +

q

2

�
−A5(k′)V ∗m1

�
k′ − q

2

�
Vm3

�
k′ +

q

2

�)#
, (15)

A3(k) =
h
ωα(q)− E2

�
k +

q

2

�
+ E2

�
k − q

2

�i−1

"
A3(k)

3X
m=1

�
u+ (u′ − u)δm,3

�(
V ∗m2

�
k +

q

2

�
Vm2

�
k +

q

2

�

× 1

N

X
k′

�
V ∗m2(k′)Vm2(k′) + V ∗m3(k′)Vm3(k′)

�
− V ∗m2

�
k − q

2

�
Vm2

�
k − q

2

� 1

N

X
k′

V ∗m3(k′)Vm3(k′)

)

+A1(k)

3X
m=1

�
u+ (u′ − u)δm,3

�
V ∗m2

�
k +

q

2

�
Vm1

�
k +

q

2

� 1

N

X
k′

�
V ∗m2(k′)Vm2(k′) + V ∗m3(k′)Vm3(k′)

	

−A4(k)
3X

m=1

�
u+ (u′ − u)δm,3

�
V ∗m3

�
k − q

2

�
Vm2

�
k − q

2

� 1

N

X
k′

V ∗m3(k′)Vm3(k′)

−
3X

m=1

�
u+ (u′ − u)δm,3

�
V ∗m2

�
k +

q

2

�
Vm2

�
k − q

2

� 1

N

X
k′

(
A1(k′)V ∗m2

�
k′ − q

2

�
Vm1

�
k′ +

q

2

�

+A2(k′)V ∗m3

�
k′ − q

2

�
Vm1

�
k′ +

q

2

�
+A3(k′)V ∗m2

�
k′ − q

2

�
Vm2

�
k′ +

q

2

�

+A4(k′)V ∗m3

�
k′ − q

2

�
Vm2

�
k′ +

q

2

�
−A5(k′)V ∗m1

�
k′ − q

2

�
Vm3

�
k′ +

q

2

�)#
, (16)

A4(k) =
h
ωα(q)− E2

�
k +

q

2

�
+ E3

�
k − q

2

�i−1
"
A4(k)

3X
m=1

�
u+ (u′ − u)δm,3

�(
V ∗m2

�
k +

q

2

�
Vm2

�
k +

q

2

�

× 1

N

X
k′

�
V ∗m2(k′)Vm2(k′) + V ∗m3(k′)Vm3(k′)

�
− V ∗m3

�
k − q

2

�
Vm3

�
k − q

2

� 1

N

X
k′

V ∗m3(k′)Vm3(k′)

)

+A2(k)
3X

m=1

�
u+ (u′ − u)δm,3

�
V ∗m2

�
k +

q

2

�
Vm1

�
k +

q

2

� 1

N

X
k′

�
V ∗m2(k′)Vm2(k′) + V ∗m3(k′)Vm3(k′)

	

−A3(k)
3X

m=1

�
u+ (u′ − u)δm,3

�
V ∗m2

�
k − q

2

�
Vm3

�
k − q

2

� 1

N

X
k′

V ∗m3(k′)Vm3(k′)

−
3X

m=1

�
u+ (u′ − u)δm,3

�
V ∗m2

�
k +

q

2

�
Vm3

�
k − q

2

� 1

N

X
k′

(
A1(k′)V ∗m2

�
k′ − q

2

�
Vm1

�
k′ +

q

2

�

+A2(k′)V ∗m3

�
k′ − q

2

�
Vm1

�
k′ +

q

2

�
+A3(k′)V ∗m2

�
k′ − q

2

�
Vm2

�
k′ +

q

2

�

+A4(k′)V ∗m3

�
k′ − q

2

�
Vm2

�
k′ +

q

2

�
−A5(k′)V ∗m1

�
k′ − q

2

�
Vm3

�
k′ +

q

2

�)#
, (17)



416 The European Physical Journal B

A5(k) =
h
ωα(q) + E1

�
k +

q

2

�
− E3

�
k − q

2

�i−1

"
A5(k)

3X
m=1

�
u+ (u′ − u)δm,3

�(
V ∗m3

�
k +

q

2

�
Vm3

�
k +

q

2

�

× 1

N

X
k′

�
V ∗m2(k′)Vm2(k′) + V ∗m3(k′)Vm3(k′)

�
− V ∗m1

�
k − q

2

�
Vm1

�
k − q

2

� 1

N

X
k′

V ∗m3(k′)Vm3(k′)

)

−
3X

m=1

�
u+ (u′ − u)δm,3

�
V ∗m3

�
k +

q

2

�
Vm1

�
k − q

2

� 1

N

X
k′

(
A1(k′)V ∗m2

�
k′ − q

2

�
Vm1

�
k′ +

q

2

�

+A2(k′)V ∗m3

�
k′ − q

2

�
Vm1

�
k′ +

q

2

�
+A3(k′)V ∗m2

�
k′ − q

2

�
Vm2

�
k′ +

q

2

�

+A4(k′)V ∗m3

�
k′ − q

2

�
Vm2

�
k′ +

q

2

�
−A5(k′)V ∗m1

�
k′ − q

2

�
Vm3

�
k′ +

q

2

�)#
· (18)
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Fig. 5. The dispersion relation of magnon with t′ = 0.9 and
u = u′ = 1.0.

energy band. So it can be expected that four α branches
and one β branch, which have positive excitation energy,
should exist in the combined magnon excitation spectrum.
Figure 5 exhibits the dispersion relations of magnon ex-
citation for different branches when t′ = 0.9 and u =
u′ = 1.0. It is shown that the spectrum of magnon ex-
citation, just as expected, contains five energy branches,
one acoustic branch and four optical branches. The four
lower energy branches of magnons α1,2,3,4 refers to γ̂+

αq

while the highest one β refers to γ̂+
βq, and the γ̂+

αq and
γ̂+
βq correspond to the spin flip of up-spin and down-spin,

respectively. As seen from Figure 5, the lowest branch
(acoustic mode) of the magnon excitation spectrum shows
a quadratic-like dispersion relation in the limit of the long
wavelength, which means that the magnon excitation of
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Fig. 6. The two acoustic modes with t′ = 0.9, u = u′ =
0.5 (solid line) and t′ = 0.9, u = u′ = 1.0 (dashed line)
respectively.

the system possesses the characteristics of the ferromag-
netic magnons.

Figure 6 shows two acoustic modes when t′ = 0.9, u =
u′ = 1.0 and t′ = 0.9, u = u′ = 0.5, respectively. It can be
seen that the acoustic mode is significantly influenced by
the electron-electron correlation. The excitation becomes
larger when u and u′ are larger, and, as a result, the high-
spin ferromagnetic ground state of the system will be more
stable.

It is interesting to study the existence of the three-
dimensional LRO in a system made of such chains as
shown in Figure 1a. We believe that the three-dimensional
LRO should exist because of the strong Hubberd on-site
electron-electron repulsions of the π electrons on the main
chain and the unpaired electrons at the side radicals that



K.L. Yao and L. Zhao: RPA of the spin-wave excitation for quasi-1D magnetic polymer 417

are favorable to the ferromagnetic correlation in the sys-
tem. This would be more practical than the quasi-one-
dimensional case, though it is not studied by previous
works in this field. In our future studies, we will address
this problem.

4 Conclusions

We have studied the ferromagnetic properties of a quasi-
one-dimensional π-conjugated organic ferromagnetic mo-
del based on the simplified structure as shown in Fig-
ure 1a. The electron-electron correlation causes the
degeneracy of energy bands with respect to spin to be
lifted, and hence the system has a stable high-spin ferro-
magnetic ground state.

The magnon excitation is studied in the random-phase
approximation. The magnon excitation spectrum that
contains an acoustic branch and four optical branches is
obtained. The lowest acoustic branch has been found to
possess the characteristics of the ferromagnetic magnon.
The strong electron-electron correlation can make the
high-spin ferromagnetic ground state of the system more
stable.
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